ANTIMICROBIAL PEPTIDES (AMPs): DEFINITION, CLASSIFICATION, MECHANISM OF ACTION Nguyen Minh

Minh Thien Nguyen1,2, Thi My Tien Pham3,
1 Đại học Quốc Gia Thành phố Hồ Chí Minh
2 Vietnam National University Ho Chi Minh City
3 Van Lang University

Main Article Content

Abstract

The emergence of multi-antibiotic-resistant bacteria due to the uncontrolled use of antibiotics in treating human and animal diseases in developing countries is causing serious health problems. The antimicrobial peptide is a small peptide fragment that exists in most organisms in the living world and has the ability to activate the immune system, fight bacteria, fungi, viruses, and parasites, and inhibit cancer cells. More than 3.700 AMPs have been discovered and 7 AMPs have been approved by the FDA for direct injection in humans, demonstrating their potential for application in alternative treatment to traditional antibiotics. However, AMPs have not been widely used in humans and animals due to limited supply, high purification costs, and instability in the digestive system.

Article Details

References

1. Gaynes R. The discovery of penicillin - new insights after more than 75 years of clinical use. Emerging Infectious Diseases. 2017. 23(5), 849 - 853, doi: 10.3201/eid2305.161556.
2. Mazurkiewicz-Pisarek A., Baran J., Ciach T., 2023, Antimicrobial peptides: challenging journey to the pharmaceutical, biomedical, and cosmeceutical use, Int. J. Mol. Sci. 2023. 24(10), 9031, doi: 10.3390/ijms24109031.
3. Chen C. H., Lu T. K. Development and chanllenges of antimicrobial peptides for therapeutic applications. Antibiotics. 2020. 9(1), 24, doi: 10.3390/antibiotics9010024.
4. Carmona-Rebeiro A. M. Antimicrobial peptides and their assemblies, Future Pharmacology. 3023. 3, 763 - 788, doi: 10.3390/futurepharmacol3040047.
5. Huan Y., Kong Q., Mou H., Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol. 2020. 11, 582779, doi: 10.3389/fmicb.2020.582779.
6. Lai S., Zhang Q., Jin L. Natural and man - made cyclic peptide - based antibiotics. Antibiotics. 2023. 12, 42, doi: 10.3390/antibiotics12010042.
7. Ben B. R., Ellouzi H., Fouzai K., Asses N., Neffati M., et al. Optimized chemical extraction methods of antimicrobial peptides from roots and leaves of extremophilic plants: Anthyllis sericea and Astragalus armatus collected from Tunisian desert. Antibiotics. 2022. 11, 1302, doi:
10.3390/antibiotics11101302.
8. Rima M., Rima M., Failoun Z., Sabatier J. M., Bechinger B., et al. Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics, 10, 1095, doi: 10.3390/antibiotics10091095.
9. Barashkova A. S., và Rogozhin E. A. Isolation of antimicrobial peptides from different plant sources: does a general extraction method exist. Plant Methods. 2020. 16, 143, doi:
10.1186/s13007-020-00678-1.
10. Moravej H., Moravej Z., Yazdanparast M., Heiat M., Mirhosseini A., et al. Antimicrobial pepides: features, action, and their resistance mechanisms of bacteria. Microbial Drug Resistance. 2018. 24(6), 747 - 767, doi: 10.1089/mdr.2017.0392.
11. Gan B. H., Gaynord J., Rowe S. M., Deingruber T., Spring D. R. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem. Soc. Rev. 2021. 50, 7820, doi: 10.1039/d0cs00729c.
12. Lyu Z., Yang P., Lei J., và Zhao J. Biological function of antimicrobial peptides on suppressing pathogens and improving host immunity. Antibiotics. 2023. 12,1037, doi:
10.3390/antibiotics12061037.
13. Zhang Q. Y., Yan Z. B., Meng Y. M., Hong X. Y., Shao G., et al. Antimicrobial peptides:
mechanism of action, activity and clinacal potential. Military Med. Res. 2021. 8, 48, doi: 10.1186/s40779-021-00343-2.
14. Hoskin D. W., Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta. 2008. 1778(2), 357 - 375, doi: 10.1016/j.bbamem.2007.11.008.
15. Tornesello A. L., Borrelli A., Buonaguro L., Buonaguro F. M., Tornesello M. L. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. 2020. 25, 2850, doi: 10.3390/molecules25122850.
16. Zhang C., Yang M. Antimicrobial peptides: from design to clinical application. Antibiotics. 2022. 11, 349, doi: 10.3390/antibiotics11030349.
17. Zhang C., Yang M. The role and potential application of antimicrobial peptides in autoimmune diseases. Front. Immunol. 2020. 11, 859, doi: 10.3389/fimmu.2020.00859.
18. Bahar A. A., Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013. 6(12), 1543 - 1575, doi: 10.3390/ph6121543.
19. Hotchkiss R. D., Dubos R. J.Fractionation of the bactericidal agent from cultures of a soil Bacillus. J. Biol. Chem. 1940. 132, 791 - 792, doi: 10.1016/s0021-9258(19)56231-7.
20. Baradaran M. Current status of peptide medications and the position of active therapeutic peptides with scorpion venom origin. Jundishapur Journal of Natural Pharmaceutical Products. 2023. 18(1), e134049, doi: 10.5812/jjnpp-134049.
21. Sadredinamin M., Mehrnejad F., Hosseini P., Doustdar F. Antimicrobial pepeptides (AMPs). Novelty in Biomedicine. 2016. 4(2), 70 - 76, doi: 10.22037/nbm.v4i2.9158.
22. Hafeez A. B., Jiang X., Bergen P., Zhu Y. Antimicrobial peptides: an update on classifications and databases. Int. J. Mol. Sci. 2021. 22(21), 11691, doi: 10.3390/ijms222111691.
23. Hansen I. K. Ø., Isaksson J., Poth A. G., Hansen K. Ø., Andersen A. J. C., et al. Isolation and characterization of antimicrobial peptides with inusual disulfide connectivity from the colonial ascidian Synoicum turgens. Marine Drugs. 2020, 18, 51, doi: 10.3390/md18010051.
24. Decker A. P., Mechesso A., Wang G. Expanding the landscape of amino acid - rich antimicrobial peptides: defination, deployment in nature, implications for peptide design and therapeutic potential. Int. J. Mol. Sci. 2022. 23(21), 12874, doi: 10.3390/ijms232112874.
25. Ramazi S., Mohammadi N., Allahverdi A., Khalili E., Abdolmaleki P. A review on antimicrobial peptides databases and the computational tools, Database, 2022, baac011, doi:
10.1093/database/baac001.
26. Le C. F., Fang C. M., Sekaran S. D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial Agents and Chemotherapy. 2027. 61(4), 1098-4804, doi: 10.1128/aac.02340-16.
27. Vollmer W., Holtje J. V. Morphogenesis of Escherichia coli. Curr. Opin. Microbiol. 2021. 4(6), 625-633, doi: 10.1016/s1369-5274(01)00261-2.