TỔNG QUAN VỀ DẪN CHẤT AURON VÀ HOẠT TÍNH SINH HỌC

Nguyễn Thanh Trang1,2, Võ Thị Cẩm Vân1,
1 Đại học Y Dược Thành phố Hồ Chí Minh
2 Trường Đại học Kỹ Thuật Y - Dược Đà Nẵng

Nội dung chính của bài viết

Tóm tắt

Auron là nhóm hợp chất chuyển hóa thứ cấp trong cây thuộc họ flavonoid. Mặc dù tồn tại trong tự nhiên với số lượng ít và cấu trúc kém đa dạng, auron vẫn thu hút được sự chú ý của các nhà khoa học nhờ sở hữu nhiều hoạt tính sinh học tiềm năng như kháng khuẩn, kháng nấm, chống oxi hóa, độc tế bào, ức chế các enzym liên quan đến chuyển hóa... Bài tổng quan trình bày tóm tắt các phân tích về đặc điểm cấu trúc và hoạt tính sinh học của dẫn chất aurron đã được nghiên cứu và công bố trong các tài liệu cập nhật gần đây với mục tiêu nâng cao nhận thức về tiềm năng của nhóm dẫn chất này trong nghiên cứu và phát triển thuốc mới

Chi tiết bài viết

Tài liệu tham khảo

1. Ninomiya M., and Koketsu M. Minor flavonoids (chalcones, flavanones, dihydrochalcones, and aurones). Natural Products. 2013. 1867-1900.
2. Boumendjel A. Aurones: a subclass of flavones with promising biological potential. Current Medicinal Chemistry. 2003. 10(23), 2621-2630, https://doi.org/10.2174/0929867033456468.
3. Iwashina T. The Structure and Distribution of the Flavonoids in Plants. Journal of Plant Research. 2000. 113, 287-299, https://doi.org/10.1007/PL00013940.
4. Nakayama T. Enzymology of aurone biosynthesis. Journal of Bioscience and Bioengineering. 2002. 94(6), 487-491, https://doi.org/10.1016/S1389-1723(02)80184-0.
5. Geissman T.A., and Heaton C.D. Anthochlor Pigments. IV. The Pigments of Coreopsis grandiflora, Nutt. I. Journal of the American Chemical Society. 1943. 65(4), 677-683, https://doi.org/10.1021/ja01244a050.
6. Boucherle B., Peuchmaur M., Boumendjel A., and Haudecoeur R. Occurrences, biosynthesis and properties of aurones as high-end evolutionary products. Phytochemistry. 2017. 142, 92111, https://doi.org/10.1016/j.phytochem.2017.06.017.
7. Sui G., Li T., Zhang B., Wang R., Hao H., et al. Recent advances on synthesis and biological activities of aurones. Bioorganic & Medicinal Chemistry. 2021. 29, 115895, https://doi.org/10.1016/j.bmc.2020.115895.
8. Gholami A., De Geyter N., Pollier J., Goormachtig S., and Goossens A. Natural product biosynthesis in Medicago species. Natural Product Reports. 2014. 31(3), 356-380, https://doi.org/10.1039/c3np70104b.
9. Popova A.V., Bondarenko S.P., and Frasinyuk M.S. Aurones: Synthesis and Properties. Chemistry of Heterocyclic Compounds. 2019. 55(4), 285-299, https://doi.org/10.1007/s10593019-02457-x.
10. Andersen Ø., and Jordheim M. Chemistry of Flavonoid-Based Colors in Plants. 2010. 547614.Vol. 3. https://doi.org/10.1016/B978-008045382-8.00086-1.
11. Mazziotti I., Petrarolo G., and La Motta C. Aurones: A Golden Resource for Active Compounds. Molecules. 2021. 27(1), https://doi.org/10.3390/molecules27010002.
12. Haudecoeur R., and Boumendjel A. Recent advances in the medicinal chemistry of aurones. Current Medicinal Chemistry. 2012. 19(18), 2861-2875, https://doi.org/10.2174/092986712800672085.
13. Seabra R.M., Andrade P.B., Ferreres F., and Moreira M.M. Methoxylated aurones from cyperus capitatus. Phytochemistry. 1997. 45(4), 839-840, https://doi.org/10.1016/S00319422(97)00035-6.
14. Ferreira E.O., Salvador M.J., Pral E.M., Alfieri S.C., Ito I.Y., et al. A new heptasubstituted (E)aurone glucoside and other aromatic compounds of Gomphrena agrestis with biological activity. Zeitschrift fur Naturforschung J Biosci. 2004. 59(7-8), 499-505, https://doi.org/10.1515/znc2004-7-808.
15. Pare P.W., Dmitrieva N., and Mabry T.J. Phytoalexin aurone induced in Cephalocereus senilis liquid suspension culture. Phytochemistry. 1991. 30(4), 1133-1135, https://doi.org/10.1016/S0031-9422(00)95189-6.
16. Ai P.H.L., Hua H., and Chuong P.H. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science. 2008. 4(2), 89-96.
17. Sarian M.N., Ahmed Q.U., Mat So'ad S.Z., Alhassan A.M., Murugesu S., et al. Antioxidant and Antidiabetic Effects of Flavonoids: A Structure-Activity Relationship Based Study. BioMed Research International. 2017. 2017, 8386065, https://doi.org/10.1155/2017/8386065.
18. Nenadis N., and Sigalas M.P. A DFT study on the radical scavenging potential of selected natural 3′,4′-dihydroxy aurones. Food Research International. 2011. 44(1), 114-120, https://doi.org/10.1016/j.foodres.2010.10.054.
19. Wang W., Chen W., Yang Y., Liu T., Yang H., et al. New phenolic compounds from Coreopsis tinctoria Nutt. and their antioxidant and angiotensin i-converting enzyme inhibitory activities. Journal of Agricultural and Food Chemistry. 2015. 63(1), 200-207, https://doi.org/10.1021/jf504289g.
20. Luo Y., Li X., He J., Su J., Peng L., et al. Isolation, characterisation, and antioxidant activities of flavonoids from chufa (Eleocharis tuberosa) peels. Food Chemistry. 2014. 164, 30-35, https://doi.org/10.1016/j.foodchem.2014.04.103.
21. Liu Z.-Q. Enhancing Antioxidant Effect against Peroxyl Radical-Induced Oxidation of DNA: Linking with Ferrocene Moiety! The Chemical Record. 2019. 19, https://doi.org/10.1002/tcr.201800201.
22. Chen J.F., and Liu Z.Q. Ferrocenyl-appended aurone and flavone: which possesses higher inhibitory effects on DNA oxidation and radicals? Chemical Research in Toxicology. 2015. 28(3), 451-459, https://doi.org/10.1021/tx500405b.
23. Nakabo D., Okano Y., Kandori N., Satahira T., Kataoka N., et al. Convenient Synthesis and Physiological Activities of Flavonoids in Coreopsis lanceolata L. Petals and Their Related Compounds. Molecules. 2018. 23(7), https://doi.org/10.3390/molecules23071671.
24. Olleik H., Yahiaoui S., Roulier B., Courvoisier-Dezord E., Perrier J., et al. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. European Journal of Medicinal Chemistry. 2019. 165, 133-141, https://doi.org/10.1016/j.ejmech.2019.01.022.
25. Kumar G., Lathwal E., Saroha B., Kumar S., Kumar S., et al. Synthesis and Biological Evaluation of Quinoline-Based Novel Aurones. 2020. 5(12), 3539-3543, https://doi.org/10.1002/slct.201904912.
26. Tiwari K.N., Monserrat J.P., Hequet A., Ganem-Elbaz C., Cresteil T., et al. In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures. Dalton Transactions. 2012. 41(21), 6451-6457, https://doi.org/10.1039/c2dt12180h.
27. Sutton C.L., Taylor Z.E., Farone M.B., and Handy S.T. Antifungal activity of substituted aurones. Bioorganic & Medicinal Chemistry Letters. 2017. 27(4), 901-903, https://doi.org/10.1016/j.bmcl.2017.01.012.
28. Song Y.X., Ma Q., and Li J. A new aurone glycoside with antifungal activity from marinederived fungus Penicillium sp. FJ-1. Zhongguo Zhong Yao Za Zhi. Zhongguo Zhongyao Zazhi. China Journal of Chinese Materia Medica. 2015. 40(6), 1097-1101,
29. Thomas M.G., Lawson C., Allanson N.M., Leslie B.W., Bottomley J.R., et al. A series of 2(Z)2-benzylidene-6,7-dihydroxybenzofuran-3[2H]-ones as inhibitors of chorismate synthase. Bioorganic & Medicinal Chemistry Letters. 2003. 13(3), 423-426, https://doi.org/10.1016/s0960-894x(02)00957-5.
30. Hadj-esfandiari N., Navidpour L., Shadnia H., Amini M., Samadi N., et al. Synthesis, antibacterial activity, and quantitative structure-activity relationships of new (Z)-2(nitroimidazolylmethylene)-3(2H)-benzofuranone derivatives. Bioorganic & Medicinal Chemistry Letters. 2007. 17(22), 6354-6363, https://doi.org/10.1016/j.bmcl.2007.09.062.
31. WHO, and Organization W.H. Cancer. https://www.who.int/en/news-room/factsheets/detail/cancer
32. Malumbres M., and Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer. 2009. 9(3), 153-166, https://doi.org/10.1038/nrc2602.
33. Schoepfer J., Fretz H., Chaudhuri B., Muller L., Seeber E., et al. Structure-based design and synthesis of 2-benzylidene-benzofuran-3-ones as flavopiridol mimics. Journal of Medicinal Chemistry. 2002. 45(9), 1741-1747, https://doi.org/10.1021/jm0108348.
34. Hassan G.S., Georgey H.H., George R.F., and Mohammed E.R. Construction of some cytotoxic agents with aurone and furoaurone scaffolds. Future Medicinal Chemistry. 2018. 10(1), 27-52, https://doi.org/10.4155/fmc-2017-0147.
35. Monserrat J.-P., Tiwari K.N., Quentin L., Pigeon P., Jaouen G., et al. Ferrocenyl flavonoidinduced morphological modifications of endothelial cells and cytotoxicity against B16 murine melanoma cells. Journal of Organometallic Chemistry. 2013. 734, 78-85, https://doi.org/10.1016/j.jorganchem.2012.12.031.
36. Zheng X., Wang H., Liu Y.-M., Yao X., Tong M., et al. Synthesis, Characterization, and Anticancer Effect of Trifluoromethylated Aurone Derivatives. Journal of Heterocyclic Chemistry. 2015. 52, 296-301, https://doi.org/10.1002/jhet.1969.
37. Xie Y., Kril L.M., Yu T., Zhang W., Frasinyuk M.S., et al. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish. Scientific Reports. 2019. 9(1), 6439, https://doi.org/10.1038/s41598-019-42917-0.
38. Chang T.S. An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences. 2009. 10(6), 2440-2475, https://doi.org/10.3390/ijms10062440.
39. Chang T.-S. Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. 2012. 5(9), 1661-1685,
40. Zolghadri S., Bahrami A., Hassan Khan M.T., Munoz-Munoz J., Garcia-Molina F., et al. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry. 2019. 34(1), 279-309, https://doi.org/10.1080/14756366.2018.1545767.
41. Obaid R.J., Mughal E.U., Naeem N., Sadiq A., Alsantali R.I., et al. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: a systematic review. RSC Advances. 2021. 11(36), 22159-22198, https://doi.org/10.1039/D1RA03196A.
42. Okombi S., Rival D., Bonnet S., Mariotte A.-M., Perrier E., et al. Discovery of Benzylidenebenzofuran-3(2H)-one (Aurones) as Inhibitors of Tyrosinase Derived from Human Melanocytes. Journal of Medicinal Chemistry. 2006. 49(1), 329-333, https://doi.org/10.1021/jm050715i.
43. Mai N.T.T., Hai N.X., Phu D.H., Trong P.N.H., and Nhan N.T. Three new geranyl aurones from the leaves of Artocarpus altilis. Phytochemistry Letters. 2012. 5(3), 647-650, https://doi.org/10.1016/j.phytol.2012.06.014.
44. Dubois C., Haudecoeur R., Orio M., Belle C., Bochot C., et al. Versatile effects of aurone structure on mushroom tyrosinase activity. ChemBioChem. 2012. 13(4), 559-565, https://doi.org/10.1002/cbic.201100716.
45. Haudecoeur R., Carotti M., Gouron A., Maresca M., Buitrago E., et al. 2-Hydroxypyridine-Noxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS Medicinal Chemistry Letters. 2017. 8(1), 55-60, https://doi.org/10.1021/acsmedchemlett.6b00369.
46. Lee E.H., Song D.G., Lee J.Y., Pan C.H., Um B.H., et al. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biological and Pharmaceutical Bulletin. 2008. 31(8), 1626-1630, https://doi.org/10.1248/bpb.31.1626.
47. Song M.Y., Jeong G.S., Kwon K.B., Ka S.O., Jang H.Y., et al. Sulfuretin protects against cytokine-induced beta-cell damage and prevents streptozotocin-induced diabetes. Experimental and Molecular Medicine. 2010. 42(9), 628-638, https://doi.org/10.3858/emm.2010.42.9.062.
48. Zhu G., Luo Y., Xu X., Zhang H., and Zhu M. Anti-diabetic compounds from the seeds of Psoralea corylifolia. Fitoterapia. 2019. 139, 104373, https://doi.org/10.1016/j.fitote.2019.104373.
49. Chen H.J., Zhang X.S., Zhang J.W., Gu H.X., and Huang J.X. Chemical constituents from the stems of Acanthopanax senticosus with their inhibitory activity on α-glucosidase. Journal of Asian Natural Products Research. 2021. 23(8), 803-808, https://doi.org/10.1080/10286020.2020.1783657.
50. Kim H.G., Nam Y.H., Jung Y.S., Oh S.M., Nguyen T.N., et al. Aurones and Flavonols from Coreopsis lanceolata L. Flowers and Their Anti-Oxidant, Pro-Inflammatory Inhibition Effects, and Recovery Effects on Alloxan-Induced Pancreatic Islets in Zebrafish. Molecules. 2021. 26(20), https://doi.org/10.3390/molecules26206098.