A REVIEW OF RHEOGRAPHY: THE NONINVASIVE VASCULAR MONITORING IN MEDICINE
Main Article Content
Abstract
Peripheral arterial disease is becoming more common worldwide. In Vietnam, its prevalence is rising due to increasing cases of diabetes and high blood pressure. Rheography is a non-invasive method used to diagnose peripheral arterial disease, but it is not widely used in healthcare centers, especially in the Mekong Delta. This study aims to summarize current rheography knowledge and suggest future research directions. Rheography measures changes in electrical resistance (impedance) in body tissues as blood flow changes. This technique, also known as impedance plethysmography, helps assess blood circulation in the limbs. At Can Tho University of Medicine and Pharmacy Hospital, a rheometer with six electrodes is used to measure these changes. The rheography procedure starts with healthcare professionals explaining the procedure to patients, then body measurements are taken, and the electrodes are positioned based on the examined blood vessels. The results appear as waveforms, which help assess vascular tone (the state of blood vessels) and blood flow intensity, which correspond to different phases of the heartbeat. Rheography is useful in diagnosing blood vessel problems such as peripheral arterial disease, deep vein thrombosis, and cardiac autonomic neuropathy. However, the effectiveness of rheography depends on the expertise of the reader. In addition, certain conditions, such as calf thrombi or nonocclusive proximal clots, are harder to diagnose because these conditions only partially block the blood vessels. Future research should focus on the use of rheography in combination with other diagnostic methods and the effectiveness of this combination in disease scanning.
Keywords
rheography, impedance plethysmography, peripheral arterial disease, diabetes, atherosclerosis
Article Details
References
2. Ministry of Health. In Vietnam, the rate of people suffering from sugar disease is increasing rapidly. 2023. https://moh.gov.vn/tin-noi-bat/-/asset_publisher/3Yst7YhbkA5j/content/vietnam-hien-ty-le-nguoi-mac-benh-ai-thao-uong-ang-gia-tang-nhanh.
3. Ministry of Health. Alarming the situation of excess cholesterol: Implications and solutions. 2022. https://moh.gov.vn/tin-tong-hop/-/asset_publisher/k206Q9qkZOqn/content/bao-ongthuc-trang-thua-cholesterol-he-luy-va-giai-phap.
4. Benjamin N.W., Anders B.W., Kasper M.P., Gorm B.J., and Børge G.N. Elevated remnant cholesterol increases the risk of peripheral artery disease, myocardial infarction, and ischaemic stroke: a cohort-based study. European Heart Journal. 2022. 43(34), 3258–3269. doi:10.1093/eurheartj/ehab705.
5. National Center for Chronic Disease Prevention and Health Promotion, Division for Heart Disease and Stroke Prevention. Peripheral Arterial Disease (PAD). 2022. https://www.cdc.gov/heartdisease/PAD.htm.
6. Zemaitis M.R., Boll J.M., and Dreyer M.A. Peripheral Arterial Disease. In: StatPearls [Internet]. StatPearls Publishing.2025. PMID: 28613496.
7. Volodymyr K., Halyna K., and Aleksandra K.S. Advanced Computing Methods for Impedance Plethysmography Data Processing. Sensors. 2022. 22, 2095. doi: 10.3390/s22062095
8. Garba R.S., Favour M., Demilade S.A., Chibuike C.A., Michael O.B., and Bob-Manuel T. Peripheral Artery Disease: A Comprehensive Updated Review. Current Problems in . 2022. 47(11) 101082. doi: 10.1016/j.cpcardiol.2021.101082.
9. Jack E. Ansell, chapter 53 - Venous Thrombosis, Editor(s): Mark A. Creager, Victor J. Dzau, Joseph Loscalzo, Vascular Medicine, W.B. Saunders, 2006. 743-764. doi: 10.1016/B978-07216-0284-4.50059-2.
10. Locker T., Goodacre S., Sampson F., Webster A., and Sutton A.J. Meta-analysis of plethysmography and rheography in the diagnosis of deep vein thrombosis. Emerg Med J. 2006. 23(8), 630-5. doi: 10.1136/emj.2005.033381.
11. Khoma V., Kenyo H., and Kawala-Sterniuk A. Advanced Computing Methods for Impedance
Plethysmography Data Processing. Sensors (Basel). 2022. 22(6), 2095. doi:10.3390/s22062095. 12. Seipel J.H. The biophysical basis and clinical applications of rheoencephalography. Neurology. 1967. 17(5), 443-51. doi: https://doi.org/10.1212/wnl.17.5.443.
13. Nguyen Hoang Tin, Nguyen Trung Kien, Tran Duc Long, Le Thi Thuy An, Phung Minh Thu, Banh Thi Ngoc Truc, Vo Thi Trang, and Bodo M. Characteristics of Rheoencephalography and some associated factors on menopausal women. J Electr . 2022. 13(1), 78-87. doi: 10.2478/joeb2022-0012.
14. Company Medis Medizinische Messtechnik GmbH Brochure, Angiologic Diagnostic System, Diagnostic support manual. 2012. https://www.yumpu.com/en/document/view/3709259/rheoscreenmedis-medizinische-meaaytechnik-gmbh.
15. Yamamoto Y., Yamamoto T., and Öberg P.Å. Impedance plethysmography for blood flow measurements in human limbs. Med. Biol. Eng. Comput. 1992. 30, 518-524. doi:10.1007/BF02457831.
16. Polzer K, Schuhfried F, Heeger H. Rheography, Heart. 1960. 22, 140-148. doi:
10.1136/hrt.22.1.140.
17. Company Medis Medizinische Messtechnik GmbH, Impedance Plethysmography (IPG). https://www.medis.company/en/methods/impedance-plethysmography.
18. Gamry Instruments, Basis Of Electrochemical Impedance Spectroscopy. https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/.
19. Yazdanian H., Mahnam A., Edrisi M., and Esfahani M.A. Design and Implementation of a Portable Impedance Cardiography System for Noninvasive Stroke Volume Monitoring. J Med Signals Sens. 2016. 6(1), 47-56. doi: https://pubmed.ncbi.nlm.nih.gov/27014612/.
20. Jain RK, Mandlik SA, Sinha V. 25 years of impedance plethysmography. 2003.
https://www.semanticscholar.org/paper/25-YEARS-OF-IMPEDANCE-
PLETHYSMOGRAPHY-Jain-Mandlik/b1b3fb96d81b437c2929f624dbffe74554fe69f9.
21. Huang, A. L., Silver, A. E., Shvenke, E., Schopfer, D. W., Jahangir, E., Titas, M. A., Shpilman,
A., Menzoian, J. O., Watkins, M. T., Raffetto, J. D., Gibbons, G., Woodson, J., Shaw, P. M., Dhadly, M., Eberhardt, R. T., Keaney, J. F., Jr, Gokce, N., & Vita, J. A. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arteriosclerosis, thrombosis, and vascular biology. 2007. 27(10), 2113-2119. doi: 10.1161/ATVBAHA.107.147322.
22. Mašanauskienė E, Sadauskas S, Naudžiūnas A, Unikauskas A, Stankevičius E. Impedance plethysmography as an alternative method for the diagnosis of peripheral arterial disease. Medicina (Kaunas). 2014. 50(6), 334-9. doi: 10.1016/j.medici.2014.11.007.
23. Jamieson CG, Thomson CL, Provan JL. A clinical evaluation of impedance rheography in peripheral arterial disease. Surg Gynecol Obstet. 1978. 146(2), 173-6. https://pubmed.ncbi.nlm.nih.gov/622660/.
24. Haapala M, Lyytikäinen LP, Peltokangas M, Koivistoinen T, Hutri-Kähönen N, Laurila MM, Mäntysalo M, Raitakari OT, Kähönen M, Lehtimäki T, Vehkaoja A, Oksala N. Impedance plethysmography-based method in the assessment of subclinical atherosclerosis. Atherosclerosis. 2021. 319, 101-107. doi: 10.1016/j.atherosclerosis.2021.01.006.
25. Bhat S, Sudeep K, Jain RK. Role of impedance plethysmography in detecting dysautonomia and vascular changes in the dysglycemic milieu of gestational diabetes – A case–control study. Med J Dr. D.Y. Patil Vidyapeeth. 2023. 16(Suppl 1), S102-S109. doi: 10.4103/mjdrdypu.mjdrdypu_1035_21.
26. Heijboer H, Cogo A, Büller HR, Prandoni P, ten Cate JW. Detection of deep vein thrombosis with impedance plethysmography and real-time compression ultrasonography in hospitalized patients. Arch Intern Med. 1992. 152(9), 1901-3. doi: 10.1001/archinte.1992.00400210123021.
27. Flanigan DP, et al. Vascular-laboratory diagnosis of clinically suspected acute deep-vein thrombosis. The Lancet. 1978. 312(8085), 331-4. https://www.thelancet.com/journals/lancet/article/PIIS01406736(78)92939-2/fulltext.
28. Benedict KT Jr, Wheeler HB, Patwardhan NA. Impedance plethysmography: Correlation with contrast venography. Radiology. 1977. 125(3), 695-9. doi: 10.1148/125.3.695.