THE ROLE OF MICRORNA-146A POLYMORPHISM IN THE PROGNOSIS OF ACUTE MYOCARDIAL INFARCTION

Hoang Toan Ngo1,, Kim Son Tran1
1 Can Tho University of Medicine and Pharmacy

Main Article Content

Abstract

Acute myocardial infarction is a dangerous disease with a high mortality rate. Patients who survive myocardial infarction still suffer severe consequences from cardiovascular events. Therefore, early and accurate prognosis of high-risk subjects is extremely important. Currently, based on the individualization of patients, there is a new approach to prognosis that involves examining the genetic polymorphism characteristics of each patient. This approach provides a lot of important information in disease prognosis. Recently, a polymorphism of microRNA-146a, rs2910164 (G/C), was found to have the ability to predict major cardiovascular events in patients with acute myocardial infarction, thereby opening a new approach for miRNA polymorphism imaging in disease prognosis right from the molecular level.

Article Details

References

1. Minchin S, Lodge J. Understanding biochemistry: structure and function of nucleic acids. Essays Biochem. 2019. 63(4), 433-456, doi: 10.1042/EBC20180038.
2. Leitão AL, Enguita FJ. A Structural View of miRNA Biogenesis and Function. Noncoding RNA. 2022. 8(1), 1-10, doi: 10.3390/ncrna8010010.
3. Çakmak HA, Demir M. MicroRNA and Cardiovascular Diseases. Balkan Med Journal. 2020.
37(2), 60-71, doi: 10.4274/balkanmedj.galenos.2020.2020.1.94.
4. Yang Z, Liu Z. The emerging role of microRNAs in breast cancer. Journal of Oncology. 2020.
(1), doi: 10.1155.2020.9160905.
5. Lu TX, Rothenberg ME. MicroRNA. Journal of allergy and clinical immunology. 2018. 141(4), 1202-1207, doi: 10.1016/j.jaci.2017.08.034.
6. Nitschke L, Tewari A, Coffin SL, Xhako E, Pang K et al. miR760 regulates ATXN1 levels via interaction with its 5' untranslated region. Genes & Development. 2020. 34(17-18), 1147-1160, doi: 10.1101/gad.339317.120.
7. O'Brien J. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in endocrinology. 2018. 9(1), 402, doi: 10.3389/fendo.2018.00402.
8. Liao Z, Zheng R, Shao G. Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels. International journal of molecular medicine. 2023. 51(1), 1-16, doi: 10.3892/ijmm.2022.5210.
9. Paterson MR, Kriegel AJ. MiR-146a/b: a family with shared seeds and different roots. Physiol Genomics. 2017. 49(4), 243-252, doi: 10.1152/physiolgenomics.00133.2016.
10. He L, Wang Z, Zhou R, Xiong W, Yang Y et al. Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomedicine & Pharmacotherapy. 2021. 133(1), 110993, doi: 10.1016/j.biopha.2020.110993.
11. Tang Y, Luo X, Cui H, Ni X, Yuan M et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009. 60(4), 1065-1075, doi: 10.1002/art.24436.
12. Li X, Liao J, Su X, Li W, Bi Z et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 2020. 10(21), 9561, doi: 10.7150/thno.42153.
13. Wang XP, Luoreng ZM, Zan LS, Li F, Li N. Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene. Journal of Dairy Science. 2017. 100(9), 7648-7658, doi: 10.3168/jds.2017-12630.
14. Zhang X, Guo Y, Xu X, Tang T, Sun L et al. miR-146a promotes Borna disease virus 1 replication through IRAK1/TRAF6/NF-κB signaling pathway. Virus research. 2019. 271(1), 197671, doi: 10.1016/j.virusres.2019.197671.
15. Quinn EM, Wang JH. MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One. 2013. 8(4), e62232, doi: 10.1371/journal.pone.0062232..
16. Yang L, Boldin MP, Yu Y, Liu CS, Ea CK et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012. 209(9),1655-70, doi: 10.1084/jem.20112218.
17. Hsu YR, Chang SW, Lin YC, Yang CH. MicroRNA-146a Alleviates Experimental Autoimmune Anterior Uveitis in the Eyes of Lewis Rats. Mediators Inflamm. 2017, 9601349, doi: 10.1155/2017/9601349.
18. He X, Tang R. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. EBioMedicine. 2016. 13(1), 339-47, doi: 10.1016/j.ebiom.2016.10.024.
19. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010. 142(6), 914-29, doi: 10.1016/j.cell.2010.08.012.
20. Chen Y, Wang JJ, Li J, Hosoya KI, Ratan R et al. Activating transcription factor 4 mediates hyperglycaemia-induced endothelial inflammation and retinal vascular leakage through activation of STAT3 in a mouse model of type 1 diabetes. Diabetologia. 2012. 55(9), 2533-45, doi: 10.1007/s00125-012-2594-1.
21. Shirai T, Nazarewicz RR. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine. 2016. 213(3), 33754, doi: 10.1084/jem.20150900.
22. Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res. 2017. 139(1),15-22, doi: 10.1016/j.visres.2017.03.009.
23. Guo H, Zhang Y, Liao Z, Zhan W, Wang Y et al. MiR-146a upregulates FOXP3 and suppresses inflammation by targeting HIPK3/STAT3 in allergic conjunctivitis. Ann Transl Med. 2022. 10(6), 344, doi: 10.21037/atm-22-982.
24. Ferrer-Marín F. miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia. 2020. 34(10), 2648-2659, doi:
10.1038/s41375-020-0767-3.
25. Li T, Li M. miR‑146a regulates the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF‑κB signaling by targeting TRAF6. Oncol Rep. 2019. 41(5), 2897-2908. doi: 10.3892/or.2019.7046.
26. Morishita Y, Imai T, Yoshizawa H, Watanabe M, Ishibashi K et al. Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. Int J Nanomedicine. 2015. 10(1), 3475-88, doi: 10.2147/IJN.S82587.
27. Zou Y, Cai Y, Lu D, Zhou Y, Yao Q et al. MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide. Cell Signal. 2017. 39(1), 1-8, doi: 10.1016/j.cellsig.2017.07.016.
28. Raitoharju E. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011. 219(1), 211-7, doi: 10.1016/j.atherosclerosis.2011.07.020.
29. Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T et al. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of reninangiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci. 2010. 119(9), 395-405, doi: 10.1042/CS20100003.
30. Oerlemans MI, Mosterd A, Dekker MS, de Vrey EA, van Mil A et al. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med. 2012. 4(11), 1176-85, doi: 10.1002/emmm.201201749.
31. Xiao S, Xue T, Pan Q, Hu Y, Wu Q et al. MicroRNA-146a Serves as a Biomarker for Adverse Prognosis of ST-Segment Elevation Myocardial Infarction. Cardiovasc Ther. 2021, 2923441, doi: 10.1155/2021/2923441.
32. Al-Koofee DA, Mubarak SM. Genetic polymorphisms. The Recent Topics in Genetic Polymorphisms. 2019, doi: 10.5772/intechopen.88063.
33. Bao MH, Xiao Y, Zhang QS, Luo HQ, Luo J et al. Meta-Analysis of miR-146a Polymorphisms Association with Coronary Artery Diseases and Ischemic Stroke. Int J Mol Sci. 2015. 16(7), 14305-17, doi: 10.3390/ijms160714305.
34. Qiao XR, Zheng T, Xie Y, Yao X, Yuan Z et al. MiR-146a rs2910164 (G/C) polymorphism is associated with the development and prognosis of acute coronary syndromes: an observational study including case control and validation cohort. J Transl Med. 2023. 21(1), 325, doi: 10.1186/s12967-023-04140-4.
35. Tongneng X. Correlation of miRNA-146a SNP and its expression with the diagnosis and prognosis of patients with acute STEMI. J Clin Cardiol. 2021. 37(11), 1002-1007, doi: 10.13201/j.issn.1001-1439.2021.11.007.
36. Shi B, Wang X, Xue T, Liu J, Wu W et al. Expression level of miR-146a correlates with the coronary lesion severity and clinical prognosis in UA patients. Research square. 2023, doi: 10.21203/rs.3.rs-3140515/v1.
37. Huang S. A Genetic Variant in Pre-miR-146a (rs2910164 C>G) Is Associated with the Decreased Risk of Acute Coronary Syndrome in a Chinese Population. Tohoku J Exp Med. 2015. 237(3), 227-33, doi: 10.1620/tjem.237.227.